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ABSTRACT: We show that up to 90% reflectivity can be
achieved by using guided plasmonic resonances in a one-
dimensional periodic array of plasmonic nanoribbon. In
general, to achieve strong reflection from a guided resonance
system requires one to operate in the strongly overcoupled
regime where the radiative decay rate dominates over the
intrinsic loss rate of the resonances. Using an argument similar
to what has been previously used to derive the Chu-
Harrington limit for antennas, we show theoretically that
there is no intrinsic limit for the radiative decay rate, even
when the system has an atomic scale thickness, in contrast to the existence of such limits on antennas. We also show that the
current distribution due to plasmonic resonance can be designed to achieve a very high external radiative rate. Our results show
that high reflectivity can be achieved in an atomically thin graphene layer, pointing to a new opportunity for creating atomically
thin optical devices.
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Recently there has been significant interest in achieving
strong reflection from atomically thin materials, with

potential applications in high efficiency optical modulators1

and for achieving large optomechanical interactions.2 For this
purpose, it is essential to create and utilize various kinds of
optical resonances in these materials. For example, it has been
recently demonstrated that, at low temperature, monolayer
MoSe2 can achieve high reflection of incident light due to its
excitonic resonance.1,3 Additionally, the plasmonic resonances
of graphene nanoribbons have been studied. Typically,
reflection is not the primary point of interest, as the reflectivity
is not particularly strong, with values under 20%.4−7 Related to
our work, ref 8 recently observed experimentally radiative rate
enhancement in graphene nanoribbon array when the edges of
the nanoribbons are brought together. Our work provides a
theoretical understanding of this effect and indicates the
implication of this effect for reflectivity enhancement.
To achieve strong reflection using a resonance, one must

operate in an effectively one-dimensional system where the
transmitted and reflected light are restricted to a single
diffraction order. Moreover, the resonance must be in the
overcoupled regime where the external radiative rate of the
resonance dominates over the intrinsic loss rate. Thus, it is
important to develop a fundamental understanding of the
external radiative rate for a resonance in an effective one-
dimensional system. For a resonance in a two- or three-
dimensional system, such as the resonance found in an
antenna, the Chu-Harrington limit constrains the radiative

decay rate with an upper bound proportional to the antenna’s
physical size.9−11 However, there has not been a similar
understanding of whether there exists a fundamental bound on
external radiative decay rate for resonances in effective one-
dimensional systems.
In this Letter we theoretically show that there is no upper

bound on the radiative decay rate in a one-dimensional
resonance. We then demonstrate a practical design approach
toward enhancing the radiative decay by engineering the
conduction current distribution in a plasmonic resonator
consisting of a single-atomic-layer graphene nanoribbons. The
resulting structure exhibits high reflection even when realistic
loss rates of graphene is taken into account.
To understand the role of a resonance in reflection and the

need for a large external radiative rate, consider the exemplary
geometry as shown in Figure 1a, where a sheet of graphene
nanoribbons is suspended in air with its reflectivity spectrum
shown in Figure 1b which exhibits strong reflection. We
choose the periodicity, defined as L = w + d, to be at
subwavelength scale such that for normally incident light the
system behaves effectively as a one-dimensional system.
Suppose the system supports a resonance. Then, from the
temporal coupled mode theory formalism, the reflection of the
system has the form12,13
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where ϕ is a phase factor, ω0 is the resonant frequency, rb and
tb are the reflection and transmission of the direct scattering
process. γr represents the external radiative decay rate and γi
represents the internal loss rate. For extremely thin materials
such as graphene operating in the mid- to near-infrared,
generally rb ≈ 0 and tb ≈ 1. From eq 1, high reflectivity
requires that the resonance be designed to operate in the
overcoupled regime where γr ≫ γi. Therefore, to achieve high
reflection it is important to seek to enhance the radiative rate,
or equivalently to reduce the quality factor associated with the
radiative decay process.
To design a resonance-based reflector with resonant

frequency ω0, it is therefore important to understand any
possible constraint on the radiative decay rate. In two- and
three-dimensional systems, the radiative decay rate of a
resonator is subject to the Chu-Harrington limit. Here we
briefly review the arguments of this limit since this under-
standing is essential for our present work. Related to the
radiative decay rate γr, one can alternatively define a radiative
quality factor, Qr = ω0/(2γr), which depends on the period-

averaged energy stored in the resonator W, as well as the
period-averaged radiated power Prad as

ω
=Q

W
Pr

0

rad (2)

Consider a linearly polarized dipole antenna which radiates to
free space, and can be bounded by a sphere with radius r = a.
Assuming that this antenna supports only the TM01 mode,
then in free space outside the bounding sphere, one of its
electric field components has the form:14
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The first term in the parentheses above corresponds to the
radiative field, from which one can determine the total
radiative power Prad in eq 2. The second and third terms
correspond to the nonradiative near-field. Integrating the
energy for such near-field component in the volume outside
the bounding sphere, we get a lower bound on the stored
energy. Therefore, from eq 2, one obtains a lower bound of the
radiative quality factor for the dipole antenna,

≥ +Q
k a k a
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( )r
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3

(4)

While the derivation here is for a dipole antenna, one can in
fact show that this bound applies in general for any antenna.14

A similar derivation can be carried out for two-dimensional
systems.15

The essence of the derivation above is that in the spherical
coordinate system which is appropriate for three dimensions,
an outgoing wave in free space always contains near-field
components, as shown in eq 3. And hence there is always
energy storage associated with such an outgoing wave. Such
energy storage necessitates a lower bound in the radiative
quality factor. On the other hand, for a one-dimensional
system, an outgoing wave solution in free space has the form:

∼ − | |E z e( )x
jk z

(5)

which need not have any near-field component. Thus, using
the same argument for the Chu-Harrington limit, as discussed
above, one should conclude that there is no limit on the lower
bound of the radiative quality factor for a one-dimensional
system.
We now show both analytically and numerically that the

structure, as shown in Figure 1a, which consists of an array of
suspended graphene nanoribbons, provides a pathway to
achieve resonances with very high radiative rate. Numerically,
we use the Rigorous Coupled Wave Analysis (RCWA) to
simulate the structure shown in Figure 1a. We describe the
conductivity of graphene as
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where the first term is the intraband term and the second is the
interband term and G(ϵ) = sinh(ϵ/(kbT))/(cosh(μ/(kbT)) +
sinh(ϵ/(kbT))), with kb the Boltzmann constant and T the
temperature.16,17 In eq 6, ϵ is the electron energy (in the
conduction band), μ is the chemical potential, and τ is the
scattering time. Unless otherwise noted, in this paper, we

Figure 1. (a) Periodic array of graphene nanoribbons. (b)
Numerically computed reflection spectrum for an array of graphene
nanoribbons with w = 0.9 μm, and d = 0.050 μm. The orange line
indicates the reflectivity for a single uniform graphene layer and the
dashed green line indicates the coupled mode theory (CMT) fit to the
0th order resonance.
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choose μ = 0.8 eV, τ = 1.25 × 10−12 s (or an approximate

mobility of
·10000 cm

V s

2

and carrier density of 5 × 1013 cm−2) to

minimize the intrinsic loss while staying close to known
experimental results.18−26 In the RCWA simulation, the
graphene sheet is modeled as an effective dielectric layer
with a thickness (h) of 0.34 nm with a frequency dependent
dielectric constant:27
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A uniform graphene sheet supports plasmons which are TM-
polarized, with the nonzero field components being Hy, Ex, and
Ez. In the structure of Figure 1a, the periodicity along the x-
direction causes some of these plasmons to radiate into the free
space, creating a guided resonance. Here we consider only
normally incident light with kx = 0, and choose the periodicity
to be below the free space wavelength of light such that the
system behaves as an effective one-dimensional system. Since
we want to minimize the contribution of nonradiative losses γi
as that attenuates the reflectivity in eq 1, we operate in the
intraband regime where we have strong plasmonic response
with low plasmon losses.28

For an analytic treatment of the radiative rate γr, we must
relate the radiated power to specific features of the graphene
plasmonic resonator. Such a resonator is described by the
surface current density Jx(x). From the surface boundary
condition

= −[ = − = ]+ −J x H x z H x z( ) ( , 0 ) ( , 0 )x y y (8)

and Maxwell’s equations, we can use Jx(x) to determine the Hy
and Ex fields of the resonance. Moreover, the structure in
Figure 1a is periodic with mirror symmetry about the center of
the nanoribbon at x = 0. Therefore, we can decompose the
surface current as a Fourier series:
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Since the lattice constant is subwavelength, the radiated power
Prad is only dependent on the zeroth order Fourier components
of Ex and Hy, with all higher order components becoming
evanescent and hence nonradiative. Combined with eq 8, we
have
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Here we take into account that the radiation can go both
upward and downward. The higher order, nonradiative
components of the Fourier decomposition in eq 9 contribute
to the stored energy W, which include both the energy stored
in the electromagnetic field as well as in the kinetic energy of
the electrons as described in terms of a kinetic inductance.29

From eq 2, minimizing the Qr can be framed as maximizing the
ratio of Prad toW. With eq 10, we can now see that to minimize
the Qr, one must maximize the relative contribution of Jx

(0)

compared to the higher order components Jx
(n), n > 0. In other

words, we want to make the contribution of evanescent waves
in the stored near field energy as small as possible relative to
the radiated power based on eq 2. We thus define the relative
contribution of the kth component as
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where δ0k is the kronecker delta. Equation 11 accounts for the
space averaging of the cosine in all the higher order
components. The numerically determined surface current
distribution Jx(x), for a few nanoribbon array structures, is
shown in Figure 2. (The RCWA simulations provide the

magnetic field distributions. The surface current distributions
are then obtained using eq 8.) A prominent feature of the
current distribution is the presence of a kink, that is, a
discontinuity in its first derivative, at the edge of the ribbons.
This kink, moreover, persists even when the air gap between
the ribbon shrinks in size. Such a kink is related to the
diverging charge density at the edges of the ribbon. From the
charge conservation equation, ∇·J = −iωρ, within the
graphene sheet at its edge, we have dJx/dx → ∞, and hence,
dx/dJx → 0. We can then perform a Taylor expansion of x(Jx)
around x = ±w/2 as
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i

k
jjjjjj

y

{
zzzzzzx J

w x
J

J( )
2

1
2

d
d

...x
x

x

2

2
2

(12)

Thus, near the edges at x = ±w/2 we have Jx(x) ∼ (x ± w/
2)1/2. In ref 5, by interpolating the behavior of Jx(x) between
two edges, it was argued that Jx(x) has the following form for
the lowest order resonance:
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For our system, eq 13 agrees quite well to the numerically
determined current distribution over a wide range of gap sizes
shown in Figure 2.
Given Jx(x) in eq 13, we can now decompose it in a Fourier

series and analyze how the geometric parameters, d and w,
affect the relative contribution of Jx

(0). From Figure 3a, the

Figure 2. Normalized distributions of the x-component of the current
for an array of graphene ribbons with width w = 0.9 μm and various
gap sizes d. The gray bars represent the graphene nanoribbons: (a) d
= 50 nm, the lowest order mode; (b) d = 200 nm, the lowest order
mode; (c) d = 50 nm, the second order mode; (d) d = 200 nm, the
second order mode.
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relative contribution of the zeroth component of Jx(x)
increases rapidly with decreasing gap size d for fixed w, while
the relative contributions of all the higher order components
decrease with decreasing gap size. This clearly indicates that
the ratio of the power radiated relative to the power stored is
increasing. Consequently, the predicted Qr, calculated with eqs
2, 8, 9, and 10 decreases with decreasing gap size according to
our theory, as shown by the cyan line in Figure 3b.
To support our analysis, we numerically compute the Qr

using the rigorous coupled wave analysis of the same structure.
For the same set of structures analyzed in Figure 3b, we
simulate their reflection spectra. An exemplary spectrum, for
the structure with the width of ribbon w = 0.9 μm and gap size
d = 0.050 μm, is shown in Figure 1b. The spectrum features
several peaks, and we focus first on the lowest order resonance,
which has the longest wavelength, for which the theory as
developed above is applicable. To determine its radiative
quality factor Qr, we fit the reflectivity spectrum using eq 1. As
shown in Figure 1b, the fit agrees quite well with the
numerically determined reflection spectrum. The radiative
quality factor Qr, thus determined for varying gap sizes, is
plotted in Figure 3b as the blue line, which agrees quite well
with the analytic prediction. Thus, we have indeed shown that
very low radiative quality factor, down to the single digits, that
is, a very high radiative rate, is achievable in this structure as
the gap size reduces. The fit to the reflectivity spectra also
determines the intrinsic loss rate Qi. For the set of structures
considered in Figure 3b, Qi ≈ 100 is more than an order of
magnitude higher than Qr. Thus, the structures are in the
overcoupled regime and exhibits strong reflectivity at
resonance. The structure with a gap size of 0.050 μm has a
peak reflectivity of 90.5%, as shown in Figure 1b. Thus, we
have shown that high reflectivity can be achieved in the
graphene nanoribbon array which is atomically thin.
The spectrum in Figure 1b also exhibits narrower peaks at

shorter wavelengths that correspond to higher-order reso-
nances. Figure 2c,d shows the current distribution for the
second-order resonance. This resonance is the next higher-
order resonance that has an even mirror symmetry with respect
to the center of the graphene ribbon. Having such an even
symmetry is necessary in order for the mode to couple to
external radiation from normal incidence. However, the
current distribution of this resonance closely resembles a

sinusoidal function. Such oscillation of the current distribution
for this mode inevitably leads to much larger higher-order
Fourier components in eq 9 and hence a much lower radiative
rate.
The behavior where the radiative line width increases as the

gap size decreases was previously observed experimentally in
metallic grating structures30 but not theoretically explained.
While the present focus of the paper is on graphene resonators,
our theory also provides a theoretical explanation of the
experimental results in ref 30. In general, our theory is
applicable to very thin plasmonic systems such as an array of
thin metal ribbons. Since we operate graphene in the intraband
regime, surface plasmons on a thin metal film will exhibit an
approximately similar surface current profile as in eq 13.
However, we select graphene as our testbed since it naturally
circumvents several issues with plasmonics on ultrathin metal
films, namely, that it is difficult to fabricate ultrathin metal
films to have a morphologically smooth surface31−33 and the
conductivity of metal films tends to decrease as thickness
decreases,34,35 which would increase material loss and decrease
the reflectivity.
Overall, such behavior is unique to plasmonic systems and

does not occur in an all-dielectric guided resonance system. As
an illustration, in Figure 4 we consider a dielectric grating

structure with a periodic array of air slits introduced into a
dielectric slab waveguide. Such a system supports guided
resonances.36 The radiation rate of the guided resonance
decreases as the gap sizes decreases since the lateral (x-
direction) profile of the guided resonance smoothly
approaches that of the guided mode of the dielectric waveguide
as the gap size decreases.
Before concluding, we briefly discuss the factors that control

the internal loss rate γi. Unlike the external radiative decay rate
γr, which is strongly structure dependent, the internal loss rate
γi is only weakly dependent on the structural geometry, and is
instead mostly controlled by material parameters, such as the
chemical potential μ and the scattering time τ in eq 6. These
parameters are related to the carrier concentration and the
mobility, both of which are more accessible experimentally.

Figure 3. (a) Relative contribution (Rk in eq 11) of the Fourier
components of the surface current function Jx(x) in eq 13 as a
function of gap size. The systems consist of an array of ribbons with w
= 0.90 μm. (b) The cyan curve is the calculated Qr using the fields
derived from the analytic ansatz in eq 13, the blue line is the Qr
determined from our RCWA reflection spectra as fitted using coupled
mode theory. The ribbon has a width of w = 0.90 μm.

Figure 4. Numerically computed radiative Q-factor for the dielectric
grating system. For the dielectric grating (shown in the inset), we use
a periodicity along the x-direction of 0.76 μm. The grating has a
thickness h = 0.25 μm and a dielectric constant of 3.5. Here, we
consider the lowest order guided resonance with a wavelength of
approximately 0.96 μm.
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The carrier concentration can be tuned via electrostatic gating
and doping,19,37 whereas the mobility can be directly
measured. In Figure 5, we show the dependency of the peak

reflectivity on carrier concentrations and mobility, for the
structure shown in Figure 1b. We see a strong dependency of
the reflectivity on these parameters. To achieve high reflectivity
generally requires high carrier concentration and high mobility.
The choice of the parameters for the spectrum shown in Figure
1b, as indicated by a cyan dot in Figure 5, reflects this
requirement, as well as the trade-off between optimizing
mobility versus increasing carrier concentration. While the
focus of the paper is on single layer graphene, we note that
higher mobility and carrier concentrations can be achieved in
bilayer or trilayer graphenes,24,38 which may be more favorable
for achieving high reflection.
In conclusion, we have shown that a periodic array of

graphene nanoribbon can be designed to achieve high
reflectivity. The underlying concept relies upon the general
observation of the lack of Chu-Harrington limit in one-
dimensional systems and the unique current distribution in
very thin 1D plasmonic gratings. By demonstrating this result
with graphene, combined with other specific aspects of
graphene, such as large in-plane Young’s modulus and high
melting point, this may open up opportunities for reflec-
tors,2,39,40 terahertz antennas,41,42 and potentially light sails.43

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: shanhui@stanford.edu.
ORCID
Nathan Zhao: 0000-0002-2092-6922
Salim Boutami: 0000-0001-6611-5159
Bo Zhao: 0000-0002-3648-6183
Funding
This work is supported by a U.S. AFOSR MURI Project
(Grant No. FA9550-17-1-0002).
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Back, P.; Zeytinoglu, S.; Ijaz, A.; Kroner, M.; Imamoglu, A.
Realization of an Electrically Tunable Narrow-Bandwidth Atomically
Thin Mirror Using Monolayer MoSe 2. Phys. Rev. Lett. 2018, 120,
No. 037401.
(2) Williamson, I. A. D.; Mousavi, S. H.; Wang, Z. Large Cavity-
Optomechanical Coupling with Graphene at Infrared and Terahertz
Frequencies. ACS Photonics 2016, 3, 2353−2361.
(3) Scuri, G.; Zhou, Y.; High, A. A.; Wild, D. S.; Shu, C.; De Greve,
K.; Jauregui, L. A.; Taniguchi, T.; Watanabe, K.; Kim, P.; Lukin, M.
D.; Park, H. Large Excitonic Reflectivity of Monolayer MoSe 2
Encapsulated in Hexagonal Boron Nitride. Phys. Rev. Lett. 2018, 120,
No. 037402.
(4) Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.;
Bechtel, H. A.; Liang, X.; Zettl, A.; Shen, Y. R.; Wang, F. Graphene
plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol.
2011, 6, 630−634.
(5) Peres, N. M. R.; Goncalves, P. A. D. An Introduction to Graphene
Plasmonics; World Scientific, 2013; Chapter 7, pp 163−192.
(6) Yan, H.; Low, T.; Zhu, W.; Wu, Y.; Freitag, M.; Li, X.; Guinea,
F.; Avouris, P.; Xia, F. Damping pathways of mid-infrared plasmons in
graphene nanostructures. Nat. Photonics 2013, 7, 394−399.
(7) Strait, J. H.; Nene, P.; Chan, W.-M.; Manolatou, C.; Tiwari, S.;
Rana, F.; Kevek, J. W.; McEuen, P. L. Confined plasmons in graphene
microstructures: Experiments and theory. Phys. Rev. B: Condens.
Matter Mater. Phys. 2013, 87, 241410.
(8) Semenenko, V.; Schuler, S.; Centeno, A.; Zurutuza, A.; Mueller,
T.; Perebeinos, V. PlasmonPlasmon Interactions and Radiative
Damping of Graphene Plasmons. ACS Photonics 2018, 5, 3459−3465.
(9) Wheeler, H. Fundamental Limitations of Small Antennas. Proc.
IRE 1947, 35, 1479−1484.
(10) Chu, L. J. Physical Limitations of OmniDirectional Antennas. J.
Appl. Phys. 1948, 19, 1163−1175.
(11) Harrington, R. F. Effect of Antenna Size on Gain, Bandwidth,
and Efficiency. Journal of Research of NIST 1960, 64, 1−12.
(12) Fan, S.; Suh, W.; Joannopoulos, J. D. Temporal coupled-mode
theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A
2003, 20, 569.
(13) Haus, H. A. Waves and Fields in Optoelectronics; Prentice Hall,
1984.
(14) McLean, J. S. A re-examination of the fundamental limits on the
radiation Q of elec- trically small antennas. IEEE Trans. Antennas
Propag. 1996, 44, 672.
(15) Collin, R.; Rothschild, S. Evaluation of antenna Q. IRE Trans.
Antennas Propag. 1964, 12, 23−27.
(16) Falkovsky, L. A. Optical properties of graphene. Journal of
Physics: Conference Series 2008, 129, No. 012004.
(17) Hanson, G. W. Dyadic Green’s functions and guided surface
waves for a surface conductivity model of graphene. J. Appl. Phys.
2008, 103, No. 064302.
(18) Gao, W.; Shu, J.; Qiu, C.; Xu, Q. Excitation of Plasmonic Waves
in Graphene by Guided-Mode Resonances. ACS Nano 2012, 6,
7806−7813.
(19) Craciun, M.; Russo, S.; Yamamoto, M.; Tarucha, S. Tuneable
electronic properties in graphene. Nano Today 2011, 6, 42−60.
(20) Bolotin, K.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.;
Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in
suspended graphene. Solid State Commun. 2008, 146, 351−355.
(21) Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.;
Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.;
Hone, J. Boron nitride substrates for high- quality graphene
electronics. Nat. Nanotechnol. 2010, 5, 722−726.
(22) Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.;
Haupt, F.; Watan- abe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C.
Ultrahigh-mobility graphene devices from chemical vapor deposition
on reusable copper. Science Advances 2015, 1, e1500222−e1500222.
(23) Yin, Y.; Cheng, Z.; Wang, L.; Jin, K.; Wang, W. Graphene, a
material for high temper- ature devices intrinsic carrier density, carrier
drift velocity and lattice energy. Sci. Rep. 2015, 4, 5758.

Figure 5. Color map of the peak resonant reflectivity of an array of
graphene nanoribbons with w = 0.9 μm and d = 50 nm and varying
combinations of mobility and carrier concentration. The cyan dot
indicates the set of parameters used for Figure 1b.

ACS Photonics Letter

DOI: 10.1021/acsphotonics.8b01640
ACS Photonics 2019, 6, 339−344

343

mailto:shanhui@stanford.edu
http://orcid.org/0000-0002-2092-6922
http://orcid.org/0000-0001-6611-5159
http://orcid.org/0000-0002-3648-6183
http://dx.doi.org/10.1021/acsphotonics.8b01640


(24) Ye, J.; Craciun, M. F.; Koshino, M.; Russo, S.; Inoue, S.; Yuan,
H.; Shimotani, H.; Morpurgo, A. F.; Iwasa, Y. Accessing the transport
properties of graphene and its multilayers at high carrier density. Proc.
Natl. Acad. Sci. U. S. A. 2011, 108, 13002−6.
(25) Efetov, D. K.; Kim, P. Controlling electron-phonon interactions
in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 2010, 105,
256805.
(26) Ni, G. X.; McLeod, A. S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K.
W.; Sunku, S. S.; Jiang, B.-Y.; Hone, J.; Dean, C. R.; Fogler, M. M.;
Basov, D. N. Fundamental limits to graphene plasmonics. Nature
2018, 557, 530−533.
(27) Vakil, A.; Engheta, N. Transformation Optics Using Graphene.
Science 2011, 332, 1291−1294.
(28) Jablan, M.; Buljan, H.; Soljacîc,́ M. Plasmonics in graphene at
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